

Nanostructured Scalable Thick-Film Magnetics

GE Global Research

Satish Prabhakaran High Frequency Power Electronics

Francis Johnson High Temperature Alloys and Processing

Dalong Zhong
Coatings and Surface Technologies

Dartmouth College

Charles Sullivan
High Frequency Magnetics & Power Electronics

Christopher Levey Microfabrication Processes

Magnetics In Power Conversion

- Magnetics (inductors and transformers) are required for most power conversion circuits, but are responsible for much of the
 - Size (volume and weight)
 - Power loss
 - Cost
 - Difficulty in design (long development cycles)

5 kW, 800 V to 48 V, 200 A, 25 kHz, 11 W/in³

"An Optimized, 99% Efficient, 5 kW, Phase-Shift PWM DC-DC Converter for Data Centers and Telecom Applications", Kolar et al. 2010 International Power Electronics Conference.

Power Conversion Trends

State-of-the-Art Materials

Strategy and Targets

- Employ high-rate deposition processes to produce millimeter thick films
- Fabricate composite microstructures to reduce eddy current loss and enable high frequency operation
- Explore multiple metal/insulator compositions and connectivity patterns to minimize risk and expand application space

Electron Beam Physical Vapor Deposition

Material property targets

Property	Today	Target
Saturation magnetization	0.3 T	1 T
Coercivity	20-80 A/m	< 1 A/m
Resistivity	1 X 10 ⁸ uΩ-cm	≥ 1000 uΩ-cm
Power loss	Saturated	\leq 300 kW/m ³ , 1 T B _{sat} , 1 MHz
Thermal conductivity	5 W/m-C	≥ 10 W/m-C
Film Thickness	bulk	1 mm
Initial relative permeability	< 1000	< 1000
Maximum operating temperature	125 C	≥ 125 C

Thick-film Composite Microstructures

"Nanogranular"
Operating frequency: 1-100 MHz

"Multilayer"
Operating frequency: 100 kHz-10 MHz

Insulator phase minimizes eddy current loss at operating frequencies

Iterative material development will identify candidate microstructures

Component Fabrication

Preliminary work at GE Unoptimized mm-scale toroids

- Deposit mm-scale films
- Post deposition machining
 - -Laser machining
 - -Electric discharge machining
- Stack to form components
- Wind conductors

Subscale component precedes final component

Fabricate Toroidal Component

Wind Wire

Example fabrication approach

Program Overview

Technology Summary

Unprecedented nanostructured, millimeter-scale thick-film magnetic materials

Scalable physical vapor deposition

Prototype power magnetic component

"Proof-of-concept" Category 2, TRL2 to TRL3

Technology Impact

2 to 3x increase in power density of magnetics components

10–100x increase in switching frequency kW-level converters

Novel methods and new materials

Nanostructured, mm-Scale Magnetic Materials

Revolutionary Magnetic Materials for High-Efficiency, High-Density Power Conversion

